
Journal of Computational Physics 229 (2010) 5870–5878
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Fast transform from an adaptive multi-wavelet representation
to a partial Fourier representation

Jun Jia *, Robert Harrison, George Fann
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6367, USA
a r t i c l e i n f o

Article history:
Received 28 May 2009
Received in revised form 1 April 2010
Accepted 6 April 2010
Available online 14 April 2010

Keywords:
Multi-wavelet
Multi-resolution analysis
Fourier transform
FFT
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.04.006

* Corresponding author.
E-mail addresses: jiaj@ornl.gov (J. Jia), harrisonrj
a b s t r a c t

We present a fast algorithm to compute the partial transformation of a function repre-
sented in an adaptive pseudo-spectral multi-wavelet representation to a partial Fourier
representation. Such fast transformations are useful in many contexts in physics and engi-
neering, where changes of representation from a piece wise polynomial basis to a Fourier
basis. The algorithm is demonstrated for a Gaussian in one and in three dimensions. For 2D,
we apply this approach to a Gaussian in a periodic domain. The accuracy and the perfor-
mance of this method is compared with direct summation.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

We describe a fast algorithm to compute the partial Fourier transform of a d-dimensional function f(x) given in an adap-
tive discontinuous multi-wavelet expansion [2,3]. The partial transform is represented by an integral:
f̂ ðpÞ ¼
Z
½0;1�d

f ðxÞe�ix�pdx; p 2 Xd; ð1Þ
where X = {2 pmjm = 0,1, . . .,c}. By partial we mean that we only compute the Fourier components less than some band limit
2pc in each dimension. Our algorithm may be regarded as a fast Fourier transform for a set of non-equally spaced sampling
points [5,9,12] that use the adaptive multi-wavelet basis for interpolation and sampling.

Our primary applications are in physics and chemistry including the electronic band-structure of solids and photonics of
nanoscale systems. These disciplines employ adaptive representations to capture localized fine-scale structure (e.g., to re-
solve the cusp in a wave function at the nucleus of an atom, or the high fields that arise in the vicinity of a corner of a nano-
scale crystal), to robustly maintain precision (e.g., by treating both bound and continuum states with equal fidelity), and for
efficient computation.

Despite the numerical and computational advantages of the adaptive algorithms, Fourier methods are still important. The
physical interpretation of results is often best performed in Fourier space, such as in the generation of Wannier functions
from Bloch states to form a local basis from the delocalized bands of solid-state electronic structure. Also, compact, albeit
cumbersome, representations can be formed by combining coarse-scale Fourier modes with localized real-space expansions.
The full potential linearized augmented plane wave (FLAPW) method for all-electron calculations in solids is an example of
this [8].
. All rights reserved.

@ornl.gov (R. Harrison), fanngi@ornl.gov (G. Fann).

http://dx.doi.org/10.1016/j.jcp.2010.04.006
mailto:jiaj@ornl.gov
mailto:harrisonrj@ornl.gov
mailto:fanngi@ornl.gov
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


J. Jia et al. / Journal of Computational Physics 229 (2010) 5870–5878 5871
Similarly, certain fast algorithms for the application of singular integral kernels using multi-resolution analysis [10] rely
upon the kernel being smooth and oscillation free at long range, which, for example, is not the case with the important scat-
tering-state Helmholtz kernel eir

r . Recently, Beylkin et al. [7] have combined Fourier and real-space representations of both
the operator and the target function to construct fast algorithms for the Helmholtz and other similar kernels. However, this
work relied upon a fast Fourier transform for non-equally spaced points [5,9,12] that employs multiple representations to
attain efficiency and seems to be very complex to implement efficiently on a parallel processor. As we shall see below, it
is usually the case that changing the representation or data layout is as or more expensive than the actual transformation;
and, hence an algorithm tailored explicitly for the multi-wavelet basis that eliminates intermediate forms is ultimately more
efficient in software such as MADNESS, Multi-resolution ADaptive Numerical Environment for Scientific Simulations [1].

For the above reasons it is highly desirable to have a numerical framework that permits us to switch as desired between
the following equivalent representations:

� coefficients of the adaptively refined discontinuous spectral element (scaling function) basis,
� function values at the Gauss–Legendre quadrature points of the adaptively refined grid,
� coefficients of the multi-wavelets, and
� coefficients of selected Fourier components.

The first three are naturally provided by the multi-wavelet basis. Therefore, following the scheme presented below, we
have extended the MADNESS software with the efficient and robust computation of the partial Fourier transform of a func-
tion represented in an adaptive, discontinuous spectral element basis.

The projection of a bandlimited function into a truncated multi-wavelet basis is no longer exactly bandlimited. However,
the truncation of the basis is controlled by a user-specified precision and the bandlimit is maintained within that precision
once some minimal resolution has been achieved. This is a critical point for designing fast algorithms. In this paper, the
bandlimit of interest is not associated with the input function but is a user-specified parameter. The main content of the
paper is presenting, analyzing and testing an algorithm designed to accurately and efficiently compute the partial Fourier
transform.

This paper is organized as follows: in Section 2, we summarize and recall the relevant aspects of multi-wavelet represen-
tations of a function. In Section 3, we describe computation of the fast transform from a function represented at a fixed level
to the corresponding Fourier space, and in Section 4 extend the transform to an adaptively refined function representation. In
Section 5, several possible performance enhancements are discussed. Finally, we demonstrate the transforms with several
numerical examples.

2. Multi-wavelet representation

We use the multi-resolution analysis approach described in [3] with the multi-wavelet basis constructed by Alpert [2]. In
this approach, the underlying basis functions, or scaling functions /j, are the first k Legendre polynomials Pj, scaled, shifted
and normalized on (0,1)
/jðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
Pjð2x� 1Þ; x 2 ð0;1Þ;

0; otherwise:

(
ð2Þ
Dyadically refining the unit interval n times, we obtain 2n equally spaced intervals [(2�nl,2�n(l + 1)), l = 0, . . .,2n�1], each of
width 2�n. On each of the refined intervals the set of rescaled and translated scaling functions
/n
jlðxÞ ¼ 2n=2/jð2

nx� lÞ ð3Þ
is defined and forms a basis on Vk
n, which is the space of scaling functions at level n. The multi-wavelet basis, denoted by

{wj(x), j = 0, . . .,k � 1}, is an orthonormal basis that spans the orthogonal complement of Vk
0 in Vk

1 with similar rescaling
and translation properties. Thus, Vk

1 ¼ Vk
0 �W0. Alpert [2] imposes an additional k vanishing moments constraint to uniquely

define this basis. In many dimensions we use tensor products of the scaling functions and the multi-wavelets.
Since Vk

0 � Vk
1 and W0 � Vk

1, there is an exact two-scale relationship between the two sets of scaling bases and thus we can
write
�/ðxÞ
�wðxÞ

 !
¼

ffiffiffi
2
p Hð0Þ Hð1Þ

Gð0Þ Gð1Þ

 !
�/ð2xÞ

�/ð2x� 1Þ

 !
; ð4Þ
which defines an orthonormal transformation between the scaling and multi-wavelet functions and the scaling functions at
the next finest scale. Here �/ðxÞ and �wðxÞ represent the vectors (/0, . . .,/k�1) and (w0, . . .,wk�1). This is the multi-wavelet ver-
sion of the fast wavelet transform [6] and is used throughout this paper to obtain coarse-scale representations of adaptively
refined functions. In higher dimensions, we use these two-scale relationships to simultaneously refine in all dimensions.

Since L2ð½0;1�Þ ¼ limn!1Vk
n, we have the L2 norm, hf ; gi ¼

R 1
0 f ðxÞgðxÞdx, defined on each Vk

n. By construction, the scaling
and wavelet functions satisfy the following orthogonality properties



5872 J. Jia et al. / Journal of Computational Physics 229 (2010) 5870–5878
hwn
jl;w

n0

j0 l0 i ¼ dnn0dll0djj0 ;

h/n
jl;/

n
j0 l0 i ¼ dll0djj0 ;

h/n
jl;w

n0

j0 l0 i ¼ 0 n0 P n:

ð5Þ
A one dimensional function f 2 L2([0,1]) can be projected to Vk
n and is represented as
f nðxÞ ¼
X2n�1

l¼0

Xk�1

j¼0

sn
jl/

n
jlðxÞ; ð6Þ
where sn
jl are the scaling function coefficients hf ;/n

jli. Computationally, this may be recast as an interpolation between func-
tion values at the Gauss–Legendre quadrature points in each sub-interval. Since the basis f/0

jl;w
m
jl g also spans Vk

n; f
n can be

rewritten as
f nðxÞ ¼
Xk�1

j¼0

s0
j0/jðxÞ þ

Xn�1

m¼0

X2m�1

l¼0

Xk�1

j¼0

dm
jl w

m
jl ðxÞ; ð7Þ
in the wavelet basis where dm
jl ¼ hf ;w

m
jl i are the wavelet coefficients. Since the first k moments of the wavelets are zero by

construction, the wavelet coefficients become sparse once the refinement level is sufficiently fine for the function to be lo-
cally smooth and truncation of small wavelet coefficients within a specified tolerance can be applied. This local truncation
enables adaptive refinement and fast algorithms with guaranteed precision [6].

3. Fast partial Fourier transform of fn ‰ Vn

Without loss of generality, we discuss our method in 1D and outline the extension to multiple dimensions.
We first consider a function f projected to fn and represented in the scaling function basis. At the fixed level n, f can be

written as
f nðxÞ ¼
X2n�1

l¼0

Xk�1

j¼0

sn
jl/

n
jlðxÞ: ð8Þ
By linearity, the Fourier transform of fn(x) is reduced to the computation of the Fourier transform of the scaling functions,
f̂ nðpÞ ¼
Z 1

0
f nðxÞe�ix�pdx p 2 X: ð9Þ
We first compute the Fourier transform of the scaling function /n
jlðxÞ:

Lemma 1. Let /n
jlðxÞ be a scaling function defined as in Section 2. Then its Fourier transform is
/̂n
jlðpÞ ¼ e�i2�nlp2�n=2/̂jð2�npÞ: ð10Þ
The derivation is straightforward. Thus, the translation dependence has factored out into an easily computed phase and
hence we need only to compute the Fourier transform of the basis functions in one box at level n. For simpler notation, we
denote
rn
j ðpÞ ¼ 2�n=2/̂jð2�npÞ; ð11Þ
and by linearity we have:

Corollary 2
f̂ nðpÞ ¼
X2n�1

l¼0

Xk�1

j¼0

sn
jle
�i2�nlprn

j ðpÞ ¼
Xk�1

j¼0

rn
j ðpÞ

X2n�1

l¼0

sn
jle
�i2�nlp: ð12Þ
The sum over l for p = 2Np, (N = 0,1, . . .,2n�1) can be performed with an FFT of size 2n, and the transform is then computed
by summation of k such FFT’s, which yield a total cost of O(nk2n).

The terms rn
j ðpÞ can be precomputed and tabulated as desired for computational efficiency. The accuracy of the transform

depends solely on how accurately this integral is computed. Let �rn
j ðpÞ denote the numerically computed

rn
j ðpÞ; �e ¼max jrn

j ðpÞ � �rn
j ðpÞj and define �̂f n by substituting r by �r in f̂ n,
�̂f n ¼
Xk�1

j¼0

�rn
j ðpÞ

X2n�1

l¼0

sn
jle
�i2�nlp: ð13Þ



J. Jia et al. / Journal of Computational Physics 229 (2010) 5870–5878 5873
Thus, we have
f̂ n ¼ �̂f n þ Oð�eÞ; ð14Þ

and we have total control over �e.

Note that the above FFT’s compute the full transform; however, we are only interested in the first c + 1 components in-
stead of 2n. Therefore, we can take advantages of the fractional FFT [4] by rewriting the sum as:
f̂ nðpÞ ¼
Xk�1

j¼0

rn
j ðpÞ

X2n�1

l¼0

sn
jle
�i2�nlp ¼

Xk�1

j¼0

rn
j ðpÞ

Xq�1

b¼0

X2m�1

a¼0

sn
jðbþaqÞe

�i2�nðbþaqÞp ¼
Xk�1

j¼0

rn
j ðpÞ

Xq�1

b¼0

e�i2�nbp
X2m�1

a¼0

sn
jðbþaqÞe

�i2�map; ð15Þ
where m ¼ dlog2ðc þ 1Þe and q = 2n�m.
Instead of k size 2n FFT’s in (12), the partial transform is a summation of k � q smaller size 2m FFT’s on the index a for each

p = 2N p, (N = 0,1, . . .,c, . . .,2m�1). Thus, the total cost is reduced to O(mk 2n).

4. Fast partial Fourier transform of f

In practice, a multi-wavelet function representation is adaptively refined instead of being at fixed at level n. It may be
refined below the level necessary to represent the locally smooth Fourier components of interest. However, to compute
the transforms accurately we only need to consider the projection of the function at the coarsest scale necessary to represent
the sought Fourier components to the desired precision, i.e. Vk

n for some n. Although neither the scaling functions nor the
corresponding wavelets are strongly bandlimited, the result immediately follows from the representation of both the func-
tion and the plane waves in the orthonormal wavelet basis.

Suppose a function f 2 L2([0,1]) is represented as a multi-wavelet expansion
f ðxÞ ¼
X2n�1

l¼0

Xk�1

j¼0

sn
jl/

n
jlðxÞ þ

X1
m¼nþ1

X2m�1

l¼0

Xk�1

j¼0

dm
jl w

m
jl ðxÞ ¼ f nðxÞ þ f n

r ðxÞ;
where f n 2 Vk
n is the projection of f in Vk

n, and f n
r represents the contributions from finer scales.

Lemma 3. Let p 2 Z and En(x) be the projection of eixp in Vk
n and ep¼: max jEn

r j¼
: max jeixp � EnðxÞj; ef¼

: max jf n
r j¼
: max jf � f nj, then
jf̂ ðpÞ � f̂ nðpÞj 6 ep � ef : ð16Þ
Proof
jf̂ ðpÞ � f̂ nðpÞj ¼
Z 1

0
eixp � ðf � f nÞdx

����
���� ¼

Z 1

0
En þ En

r

� �
� f n

r dx
����

���� 6
Z 1

0
En � f n

r dx
����

����þmax jEn
r j �

Z 1

0
f n
r dx

����
����:
The first term vanishes due to (5) and we have jf̂ ðpÞ � f̂ nðpÞj 6 ep � ef . h

Therefore, together with (14), we have
f̂ ¼ �̂f n þ Oð�eþ ep � ef Þ: ð17Þ

Typically ep; ef � Oð2�nkÞ [2]. This implies that the application of order 2 k Gauss–Legendre quadrature rule on level n suffices
to evaluate rn

j ðpÞ in (11) if we choose the level such that �e 	 ep � ef .

5. Further discussion

In the following, we consider how projection into a higher-order polynomial basis affects the computational cost of the
partial Fourier transform.

With a basis of order k uniformly refined at level n the number of sampling points is k 2n. To represent cos (6px), x 2 [0,1]
to 12 digits with k = 10, we must refine to level n = 4 using 160 points. With k = 30, this can be accomplished at level n = 0
with just 30 points. Hence, it is advantageous to project f into a high-order basis and then truncate at the level necessary to
represent the plane waves. The performance benefit of using higher-order polynomials will be sensitive to the relative
speeds of the actual implementations of matrix–vector operations and FFT. However, if we choose a high-order basis with,
for example, k = 30 in [0,1] we can represent cos (24px) to 12 digits at level two and cos (48px) at level three. These Fourier
components are adequate for the intended applications in solid-state physics, but the range of summation for l is probably
too short to benefit significantly from fast summation. Hence, with (c + 1) points being sampled in Fourier space it might be
faster (and certainly easier) to re-order the summation as
f̂ nðpÞ ¼
X2n�1

l¼0

e�i2�nlp
Xk�1

j¼0

rn
j ðpÞsn

jl: ð18Þ
This can be computed directly in O((c + 1) k 2n) operations.



5874 J. Jia et al. / Journal of Computational Physics 229 (2010) 5870–5878
We may also perform the sum in the multi-wavelet basis and exploit sparsity of the difference coefficients. In the target
function, this corresponds to the function being locally less deeply refined than the level necessary to represent some Fourier
components. For our intended applications the target function will usually be more deeply refined nearly everywhere than
the level necessary to represent the maximum Fourier component and therefore not a source of sparsity. The multi-wavelet
representation of a low-frequency Fourier component is naturally sparse relative to that of a higher-frequency component.
However, this sparsity is limited due to the poor localization of multi-wavelets in Fourier space and the structure of this
sparsity is equivalent to that exploited with great efficiency by the FFT algorithm and highly optimized implementations
thereof. For these reasons we restrict our attention to constructing a fast algorithm based upon the FFT.

The extension to higher dimensions is straightforward. In d-dimensions, due to the effect of immediate summation, the
lowest flop count is achieved by applying the transformation successively in each dimension. Theoretically, one can achieve

O mk2nPd
h¼1ðc þ 1Þh�1ðk2nÞd�h

� �
for FPFT and O

Pd
h¼1ðc þ 1Þhðk2nÞd�hþ1

� �
for direct summation, where m ¼ dlog2ðc þ 1Þe.

However, in this paper we choose another approach to improve the practical performance by utilizing the already-optimized
multi-dimensional FFT and BLAS subroutines. We arrange a d-dimensional transformation as
f̂ nð~pÞ ¼
Xk�1

~j¼0

Yd

h¼1

rn
jh
ðphÞ

 !Xq�1

~b¼0

e�i2�n~b�~p
X2m�1

~a¼0

Yd

h¼1

sn
ðbhþahqhÞjh

 !
e�i2�m~a�~p; ð19Þ
where a bold number means a d-vector, z = (z, . . .,z), and the last summation is computed by a d-dimensional FFT. The total
cost is O(mdkd 2dn). Similarly, when c is small, we re-order the summation as
f̂ nð~pÞ ¼
X2n�1

~l¼0

e�i2�n~l�~p
Xk�1

~j¼0

Yd

h¼1

rn
jh
ðphÞsn

lhjh

 !
; ð20Þ
and the last summation is computed by a tuned subroutine in MADNESS [1] with immediate summation, which calls BLAS.

Thus the cost of the direct transformation is O 2dnPd
h¼1ðc þ 1Þhkd�hþ1

� �
.

6. Numerical examples

We utilize the MADNESS (Multi-resolution Adaptive Numerical Environment for Scientific Simulation [1]) for multi-
wavelet approximations, and FFTW-3.2 [11] for FFT related computations. The reference CPU time is obtained on a
1.8 GHz AMD Opteron 844 with the GCC-4.3.2 compiler and the BLAS library provided by ACML-4.2.0.

6.1. Example 1

On the interval [�1/2,+1/2] in 1D, let gðx;rÞ ¼
ffiffiffir
p

p
e�rjxj2 , i.e., a normalized Gaussian, where the parameter r controls the

length scales. We computed the Fourier transform of g(x,r) with a band limit of c = 20 and compared with the analytic result.
The Fourier components were computed at the level where cos (2pc) is resolved to machine precision with k=17 wavelets.
The approximation error in the multi-wavelet representation of the target function was set to 10�15. For various exponents,
r = 2m with m = �1,0,1, . . .,20, the errors of the partial Fourier transforms were bounded by 2 � 10�15.

Subsequently, we chose a relatively low order basis k = 5 to explore the dependence of the error (16) upon the projection
level n. For larger k’s, it takes much fewer levels to resolve all the interested Fourier components.

The Gaussian function was projected into the scaling function basis at each level 4 to 7, in turn, and the partial Fourier
transform was performed at the same level. In Fig. 1, with a band limit of c = 15, we check the convergence of the Fourier
transform with the largest frequency computed, 2 � 15 � p. Between level 4 and 5, the errors decay roughly as 2�kn while be-
tween level 6 and 7, the errors decay as 2�2kn. According to the error estimate (16), at coarser scales (smaller n), the error of
the wavelet approximation of the transform is denoted by ef, for a large exponent Gaussian (r = 220) does not decay rapidly
as we refine the box. Therefore, we only observed convergence O(2�5n) contributed by the error of the wavelet approxima-
tion for eixp,ep. As soon as the level is deep enough to start resolving the Gaussian, the error decays as ep � ef = O(2�10k), includ-
ing the contribution from both approximation of the Gaussian and the plane wave.

In contrast, Fig. 2 shows the result with a much smoother Gaussian (r = 26). We set k = 5 and computed the partial Fourier
transform with a band limit of c = 8; the errors decay very fast at a rate of about 2�2nk right from the coarsest level until the
machine precision is reached.

In Fig. 3, we compare the CPU time used by the fast partial fourier transform (FPFT) and the direct summation. In this test,
the order of the wavelets was set to k = 8, and the threshold was 10�15. The FPFT was computed on level n = 1 to 11 and the
band limit was set to c = 2n�1, i.e. m = log2(c + 1) = n. The FPFT is accelerated by the FFT fast summation as soon as the num-
ber of computed Fourier components increased to 16. For direct summation, the elapsed CPU time increased at a rate of
roughly 22m, while for the FPFT, the CPU time increased as m2m; and these results agree with our computational cost esti-
mates. The spuriously slow performance of c = 127 is reproducible and we speculate this is due to how FFTW is affected by
power-of-two dimension arrays and memory layout.



4 5 6 7
10−15

10−10

10−5

100
k=5,  thresh=1e−15

Refine level n

M
ax

 re
la

tiv
e 

er
ro

r

p=15*2 π
p=10*2 π
p=5*2π
p=0*2π

Fig. 1. FPFT of g(x,220).

4 5 6 7
10−16

10−14

10−12

10−10

10−8

10−6

10−4
k=5,  thresh=1e−15

Refine level n

M
ax

 re
la

tiv
e 

er
ro

r

p=7*2π
p=5*2π
p=3*2π
p=1*2π

Fig. 2. FPFT of g(x,26).

J. Jia et al. / Journal of Computational Physics 229 (2010) 5870–5878 5875
6.2. Example 2

We constructed a periodic Gaussian, p, in 3D from a normalized Gaussian, g, with the lattice sum,
pðx;rÞ ¼
X
R2Z3

gðx� R;rÞ; x 2 �1
2
;
1
2

� 	3

; ð21Þ
the sum over R will be finite due to the decay of the Gaussian. We generate an input function that represents randomly dis-
tributed electronic and nuclear charge densities. The periodic charge density of an atom with nuclear charge Z centered at
the origin is represented as



4 16 64 256 1024 4096
10−5

10−4

10−3

10−2

10−1

100

101
Time − computing Fourier transform

Ti
m

e 
(s

)

Number of computed Fourier modes in each dimension

FPFT
Direct sum

Fig. 3. CPU time comparison.

5876 J. Jia et al. / Journal of Computational Physics 229 (2010) 5870–5878
atom ðx; ZÞ ¼ 2pðx;0:2Þ þ ðZ � 2Þ � pðx;
ffiffiffi
Z
p
Þ � Z � pðx;10; 000Þ: ð22Þ
This is overall charge neutral. The first term represents the electronic valence charge distribution, the second represents the
core electrons, and the third approximates a point nuclear charge. Finally, the total distribution is formed by 22 atoms with Z
from the list 8 to 29 (nuclear charge of oxygen to copper) randomly centered in the unit cell [�1/2,1/2]3.

We performed the Fourier transforms at level n = 2, . . .,6 with a band limit of c = 2n � 1 � 1, i.e. m = log2(c + 1) = n � 1. In
this example, we used order k = 12 wavelets with a threshold of 10�8. In Fig. 4, we compare the CPU time used by the FPFT
and the direct summation. As shown in the figure, the FPFT is accelerated by the fast summation as soon as the number of
computed Fourier components in each dimension increased to 4.
6.3. Example 3

Let a periodic Gaussian function in [�1/2, +1/2]2 be represented by
pðx;rÞ ¼
X
R2Z2

gðx� R;rÞ; ð23Þ
with now R a 2-vector. We set the exponent r = 220, then used k = 10 wavelets and adaptive refinement with a threshold
10�12 to obtain the initial multi-wavelet representation for the 2D Gaussian. We computed the first 322 Fourier components
with an accuracy of 10�12, and the level of refinement was determined by the required accuracy.
2 4 8 16 32
10−4

10−2

100

102

104
Time − computing Fourier transform

Ti
m

e 
(s

)

Number of computed Fourier modes in each dimension

FPFT
Direct sum

Fig. 4. CPU time comparison.



10 12 14 16 18 20 22 24 26
5

6

7

8

9
Projection to order k

Le
ve

 n

Order of wavelets, k

Fig. 5. Level of refinement.

10 12 14 16 18 20 22 24 26
10−2

10−1

100

101

102 Time − computing Fourier transform

Ti
m

e 
(s

)

Order of wavelets, k

FPFT
Direct sum

Fig. 6. CPU time comparison.

J. Jia et al. / Journal of Computational Physics 229 (2010) 5870–5878 5877
Fig. 5 shows which level of refinement is needed to resolve the largest frequency Fourier component. For a given accuracy
e, the required level n is asymptotically � log2e

2k as a function of k according to (17). This implies projection to a higher-order
wavelet basis will increase the performance if the projection results in a reduction of the level of refinement. Therefore, for a
given accuracy requirement, we should choose the least of the largest possible k’s that leads to the lowest level of refinement
delivering the required accuracy. In Fig. 6, we compare the CPU time used by the FPFT and the direct sum with projection to
different k’s. According to these results, for the best execution-time performance overall, one should always pick the highest
possible k. However memory limit constrains our choice of k. For the best performance at a given level of refinement we
should use the smallest k according to Fig. 5.

Acknowledgements

This work was supported by the Scientific Discovery through Advanced Computing (SciDAC) program of the U.S. Depart-
ment of Energy, the division of Basic Energy Science, Office of Science, under contract number DE-AC05–00OR22725 with
Oak Ridge National Laboratory. G.Fann and J.Jia were partially supported by the Office of Advanced Scientific Computing, Ap-
plied Mathematics Program of SciDAC.

Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05–00OR22725 with the U.S.
Department of Energy. The United States Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to pub-
lish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

References

[1] <http://code.google.com/p/m-a-d-n-e-s-s/>.
[2] B. Alpert. Sparse Representation of Smooth Linear Operators, PhD Thesis, Yale University, 1990.
[3] B. Alpert, G. Beylkin, D. Gines, L. Vozovoi, Adaptive solution of partial differential equations in multiwavelet bases, J. Comput. Phys. 182 (1) (2002) 149–

190.

http://code.google.com/p/m-a-d-n-e-s-s/


5878 J. Jia et al. / Journal of Computational Physics 229 (2010) 5870–5878
[4] D.H. Bailey, P.N. Swarztrauber, The fractional Fourier transform and applications, SIAM Rev. 33 (1991) 389–404.
[5] G. Beylkin, On the fast Fourier transform of functions with singularities, Appl. Comput. Harmon. Anal. 2 (4) (1995) 363–381.
[6] G. Beylkin, R.R. Coifman, V. Rokhlin, Fast wavelet transforms and numerical algorithms I, Comm. Pure Appl. Math. 44 (1991) 141–183.
[7] G. Beylkin, C. Kurcz, L. Monzn, Fast algorithms for Helmholtz Green’s functions, Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 464 (2100) (2008) 3301–3326.

Dec.
[8] P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems, Comput. Phys.

Commun. 59 (2) (1990) 399–415.
[9] A. Dutt, V. Rokhlin, Fast Fourier transforms for nonequispaced data, SIAM J. Sci. Comput. 14 (6) (1993) 1368–1393.

[10] G. Fann, G. Beylkin, R.J. Harrison, K.E. Jordan, Singular operators in multiwavelet bases, IBM J. Res. Dev. 48 (2) (2004) 161–171.
[11] M. Frigo, S.G. Johnson, The design and implementation of FFTW3, vol. 93, special issue on ‘‘Program Generation, Optimization, and Platform

Adaptation”, 2005, pp. 216–231.
[12] J.-Y. Lee, L. Greengard, The type 3 nonuniform FFT and its applications, J. Comput. Phys. 206 (1) (2005) 1–5.


	Fast transform from an adaptive multi-wavelet representation to a partial Fourier representation
	Introduction
	Multi-wavelet representation
	Fast partial Fourier transform of fn∈Vn
	Fast partial Fourier transform of f
	Further discussion
	Numerical examples
	Example 1
	Example 2
	Example 3

	Acknowledgements
	References


